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ABSTRACT

We describe a method of recovering the three-dimensional power spectrum of galaxy
clustering from measurements of the angular correlation function w(8). We apply the
technique to w(6) measured from the APM Galaxy Survey in the magnitude range
17<b,<20, using models for the redshift distribution of APM galaxies that
reproduce the distributions measured in faint redshift surveys. The APM power
spectrum is a power law at high wavenumbers, with slope P(k)x< k™ 125 as expected
from the power-law slope of the angular correlation function. The power spectrum
rises above the power law at wavenumbers 0.08 4 Mpc !sk<0.2 h Mpc™ L
Systematic and random errors dominate the estimates of the power spectrum at
wavenumbers smaller than 0.05 2 Mpc~!. Our results are compatible with the power
spectra measured from galaxy redshift surveys, but are more accurate. Our estimates
of P(k) for the APM survey are incompatible with the power spectrum of the
standard Q =1 cold dark matter (CDM) model, but can fit modified CDM models in
the region k~0.1 & Mpc~! (e.g. low-density CDM models, or mixed dark matter
models). It remains to be seen whether these models can explain the APM power
spectrum at higher wavenumbers, where the mass fluctuations are non-linear.

Key words: surveys - galaxies: clustering — dark matter — large-scale structure of

Universe.

1 INTRODUCTION

The angular correlation function measured from the APM
Galaxy Survey (Maddox et al. 1990a, hereafter M90) pro-
vides strong evidence for large-scale structure in the galaxy
distribution on scales 210 ~~! Mpc.! Recent analyses of
galaxy redshift surveys, e.g. the QDOT (Efstathiou et al.
1990a; Saunders et al. 1991) and 1.2-Jy (Fisher et al. 1993)
surveys of IRAS galaxies, the CfA (Vogeley et al. 1992) and
Stromlo/APM (Loveday et al. 1992b) redshift surveys, also
provide evidence for large-scale power in the galaxy distribu-
tion, but the results on scales 210 A~! Mpc are noisy,
because the samples are small. In addition, the power spectra
measured from redshift surveys are affected by distortions
between real-space and redshift-space caused by peculiar
velocity fields (see Kaiser 1987). It is therefore interesting to
investigate whether the three-dimensional power spectrum
of the galaxy distribution in real space can be recovered

"Throughout this paper 4 denotes Hubble’s constant H, in units of
100 km s~! Mpc~'.

from the angular statistics measured from the APM survey.
The APM survey samples a much larger volume of space
(~10% A~3 Mpc?) than any redshift survey yet available,
though a knowledge of the redshift distribution of the APM
galaxies is required to recover three-dimensional statistics.

At first sight our approach might seem unduly elaborate.
After all, it is possible to test models by projecting theoretical
power spectra, P(k), or spatial correlation functions, and
comparing with the angular correlation function, w(6),
measured from the survey. This is the approach that we and
others have adopted in the past (e.g. M90; Efstathiou,
Sutherland & Maddox 1990b). Alternatively, one can pick a
parametric form for the power spectrum and adjust the
parameters until one gains a satisfactory fit to w(0) (e.g.
Peacock 1991). However, as we demonstrate in Section 4, a
numerical inversion of w(8) can reveal features and bumps in
the power spectrum which would be difficult to parametrize
in a simple way, and hence might escape detection unless one
had some prior expectation of their presence. The numerical
inversions also show clearly how the shape of the power
spectrum is affected by random and systematic errors in the
data.
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Fall & Tremaine (1977) and Parry (1977) discuss an
inversion, using Mellin transforms, of Limber’s (1954)
equation which relates the spatial two-point galaxy correla-
tion function &(r) to the angular correlation function w(8).
However, Mellin transforms are extremely cumbersome, and
this technique would be difficult to apply to realistic models
of the redshift distribution of a galaxy survey. Instead we use
Lucy’s (1974) algorithm, which we show leads to stable
inversions, can be applied to kernels with a complex form,
and can be used to recover the three-dimensional power
spectrum directly from w(6). We describe the inversion for
the power spectrum in two dimensions in a subsequent
paper, Baugh & Efstathiou (1993).

The layout of this paper is as follows. In Section 2, we
derive the integral equation relating the three-dimensional
power spectrum to the angular correlation function. A model
for the redshift distribution of galaxies in the APM survey is
presented in Section 3. Section 4 describes the numerical
inversion of the integral equation using Lucy’s method, and
we present tests using power spectra of known functional
form. This machinery is applied to the APM Galaxy Survey
in Section 5, and the results are discussed in Section 6.

2 THE INTEGRAL EQUATION

The spatial two-point galaxy correlation function &(r, ¢) is
related to the angular correlation function w(6) by Limber’s
equation. If we assume that clustering is independent of
luminosity, and that the correlation function is negligible on
scales comparable to the depth of the survey, Limber’s
equation can be written as

LY

)=2f3° fo x*F 2a’p*(x) &(r, £) dx du
i 07 #°F a*plx) dzf

(Peebles 1980, §50.16). The selection function, p(x), is the
probability that a galaxy at coordinate distance x is detected
in the survey, and the metric is

ds?=c2ds?— a?[dx?/F?(x)+x2d0?+x?sin? 6dg?], (1b)
where F(x) depends on the cosmological model (see

equation 6 below). The physical separation between galaxy
pairs, separated by an angle 6 on the sky, is

r?=a?[u?/F(x 2+ x2o?]'7?, (1c)
=2 sin(60/2), (1d)

for separations that are small in comparison to the depth of
the sample. We use the variable ar (equation 1d) rather than
0, so that the angular correlation function is defined over the
finite range 0< a@r<2; this sets an upper limit to the angular
variable as required for the inversion described in Section 4.
The relativistic version of Limber’s equation has been
derived by Groth & Peebles (1977) and Phillips et al. (1978).
The surface density of galaxies in the survey is

0 2 )
2, 1 [=an
W= ar=— | ¥y 2

L Fx) @ P4 QSL az % (2)

where (dN/dz) dz is the number of galaxies in the redshift
range 2z to z +dz in a survey of solid angle Q,. Thus, rather
than making a model for the selection function based on the
galaxy luminosity function, its evolution, k-corrections etc.
(see M90), p(x) can be expressed in terms of the redshift

w(

(1a)

distribution (dN/dz). This is the approach adopted in this
paper, and it is described in Section 3 (see also Efstathiou et
al. 1991).

The two-point correlation function is related to the three-
dimensional power spectrum P(k, t) by

s<r,t>=2iu2L Pl ) S

and k is a comoving wavenumber. If we parametrize the
evolution of P(k, t) as

k? dk, (3)

(4)

w(w\.)=J°° P(k) kg(ka) dk. (5a)

Hence the integral equation takes a particularly simple form,
where the kernel g(k@) is given by

_1 1 [* Flx) (dN)(dz
g(kw\)—Zn (HQ) L (1+2)° (dz) (dx) Jolk@z) dz, (Sb)
where

2c 1
=—11- s F(x)=1 Q,=1), 6
x HO( JTTZ) (x)=1  (R=1) (6a)
3 cz z 3 M 21172
x_—H0(1+z) (1+5), F(x)—{1+( . )]

(2 =0). (6b)

General expressions for x and F(x) for other values of Q,
are given by Peebles (1980, §50.16). The non-relativistic
version of (5) has been derived independently by Peacock
(1991).

The assumption that P(k, ¢) is a separable function of k
and ¢ (equation 4) is clearly an oversimplification. However,
as it is impossible to invert a general function of two
variables from an observed function of one variable, some
simplifying assumption is required to model the evolution of
P(k, t). Fortunately, the median redshift range of b;~20
APM galaxies is relatively low (z,, ~ 0.2, see Section 3), and
so the correction for the evolution in P(k) is small. We there-
fore adopt the simple model of equation (4), and show how
the results change as we vary the parameter a. Also, since
the median redshift in the APM Survey is low, our results are
relatively insensitive to the cosmological model, and we
demonstrate this by using the redshift-distance relations for
the Q, =1 and Q, =0 models given in equations (6).

3 THE REDSHIFT DISTRIBUTIONS AND
THE FORM OF THE KERNEL

To evaluate the kernel (5b), we need a model for the redshift
distribution of galaxies in the APM survey. We therefore
investigated the redshift distribution of the deep pencil beam
surveys of Broadhurst, Ellis & Shanks (1988) and Colless et
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al. (1990, 1993). In these surveys, redshifts have been
measured for galaxies in the magnitude range 20<b, $22.5
in several small fields. If the solid angle of the ith field is Q’,
the sampling rate f, and the redshift completeness fi, we
define a weight w' for each galaxy in field i as

_Qiffe
w Q.
where Q is a standard solid angle which we set to one
square degree. We compute the mean weighted count of
galaxies per square degree in redshift bins of width Az =0.05
averaged over all fields which overlap a specified magnitude
range. This results in redshift histograms that use all of the
redshift data in the surveys.

We have parametrized the redshift distribution as a
function of apparent magnitude m = b, by the formula

3/2
dN=A(m)z? exp [— (z (Zm)) ] dz, (7)

where the median redshift is given by
z,=1.412z7_, (8a)
Zm(m)=0.016(b,;— 17)! +0.046, b;=17. (8b)

The coefficient A(m) is determined by the surface density of
galaxies,

3N (m)Q
am) =2 (5a)
2z,(m)
and we approximate .4 by a power law,
B100.45m
Hm) == (9)

(see Maddox et al. 1990c). A more accurate parametric form
for A(m) is not required, since the normalization of the
distribution (7) affects the shape of the redshift distributions
predicted only for surveys in which galaxies are selected in
magnitude slices. For our application, we use a wide magni-
tude slice, 17<5,<20, and so the lower magnitude limit is
unimportant.

The specific functional form of equation (7) was chosen to
provide an acceptable match to the deep redshift histograms
(see Fig. 1), whilst simultaneously fitting models of the red-
shift distribution for catalogues limited at bright magnitudes
(b;~17-18), for which we used redshift distributions
computed from the luminosity function derived from the
Stromlo/APM redshift survey (Loveday et al. 1992a).
Equations (7) and (8) thus provide an accurate description of
the redshift distributions over the entire magnitude range of
the APM Galaxy Survey (17 b,;s520.5), though in this
paper we are interested in the distributions of samples
limited towards the faint end of this range. These models are
discussed in further detail by Maddox et al. (in preparation).
The median redshift (8) predicted by this model matches
reasonably well even the medians of the faintest redshift
surveys (Cowie, Songaila & Hu 1991) which indicate z,, ~ 0.4
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Figure 1. Redshift distributions (normalized as described in the
text) for galaxies in the magnitude ranges 20-21.5 and 20-22.5. The
data are from the deep redshift surveys of Broadhurst et al. (1988)
and Colless et al. (1990, 1993). The dotted lines show the redshift
distributions calculated from the model of equations (7)-(9).
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Figure 2. The kernel g(ka) for APM galaxies in the magnitude
range 17<b,<20. We have assumed a=0 and a spatially flat
background cosmology with Q =1. The dotted portions of the curve
show regions where g(k ar) is negative. The abscissa is in units of &
Mpc~1.

at b, ~24. The effects of errors in the redshift distribution
on the inverse of w(6) are discussed in Section 5.

Fig. 2 shows a plot of the kernel g(kar) for the magnitude
slice 17<b,<20, assuming a=0 and Q=1. Notice that it
has three zero crossings over the range of k@ shown. The
first zero crossing defines a characteristic value of the
argument (kan);;! ~150 A~! Mpc; angular correlations on
scales @~ are sensitive mainly to wavenumbers k(1500
h~! Mpc)~!. For shallower catalogues, (k@);. shifts to
larger values.
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4 NUMERICAL INVERSION OF THE
INTEGRAL EQUATION

4.1 Inversion by Lucy’s method

We invert equation (5) using Lucy’s iterative method (Lucy
1974). We replace the integral in (5a) by a sum over N
equally spaced intervals in In k (typically 30 intervals over
the range 3x10735k=<30 A Mpc~!). Thus for the rth
iteration

We supply an initial guess for P;k? (usually a power law), and
compute w” from equation (10). This is followed by a new
estimate of the power spectrum:

Zi[Wo(w‘j)/Wr(w‘j)] g(kiar\i)
2.8 kiary) ’

where w°(a) is the observed angular correlation function,
and the sums extend over typically 60 logarithmically spaced
bins in the variable ar. Applying equations (10) and (11) to
the tests described below, we sometimes found that the
iterations did not converge smoothly to a solution. The
stability of the algorithm was improved by smoothing the
revised estimate of P/*!, and by limiting the change in P, in
each iteration. We set the revised estimate P;*! to be

prri=p; (11a)

P*1=BP{1-p) eP,f“+(1—;i)(P:i}+P:I})], (11b)

and we set §=0.6, ¢ =0.5 in all of the applications presented
in this paper. The solutions discussed below are not at all
sensitive to the values of § and e.

Lucy’s method was designed for positive kernels, which in
his paper are interpreted as probability distributions. For our
applications, the kernel has negative regions, as shown in Fig.
2. The negative tails in g(k@) can cause the P; to change sign
(equation 11a). This is clearly undesirable, because P(k)
must be everywhere a positive function of k. This problem is
especially acute if the true underlying power spectrum
decreases steeply at long wavelengths. A poor initial guess
for P(k) in such cases can lead to negative power spectra at
the first iteration. This problem is easily solved: if P7*! is
negative, then we ignore the second term in (11b) and set
B=0.2 (again the results are insensitive to B). As described
in the next section, with these modifications we find that
Lucy’s algorithm provides reliable and stable inversions to
realistic test problems. Any remaining instabilities in the
inversion are usually caused by the use of too narrow a range
of k and @ These instabilities are always easily identified,
since the angular correlations w(ar) computed from equation
(10) provide a poor match to the observed correlation
function.

4.2 Tests of the method

We first test how well the method can recover a known form
of the power spectrum:

.
K+K

P(k) (12)

We calculate the angular correlation function by integrating
equation (5a) numerically using the kernel of Fig. 2. The
resulting angular correlation functions are plotted as the
solid lines in Figs 3(b) and (d) for the cases k,=0.01 and 0.1
h Mpc~!. The analytic power spectra are shown as the solid
lines in Figs 3(a) and (c). For the initial guess, we set
P;k*c k%8 as appropriate for a power-law correlation
function &(r) < r~ '8 and adjusted the initial power spectrum
to reproduce roughly the amplitude of w°(@~). The initial
guesses and each alternate iteration are plotted in Fig. 3, up
to a maximum of 10 iterations. In the example shown in Figs
3(a) and (b), the solution converges quickly to the correct
answer. The solution is remarkably stable, and we can con-
tinue for over a hundred iterations with imperceptible
changes from the final solution plotted in the figure.

The example shown in Figs 3(c) and (d) is more difficult
than the previous example, because the correlation function
changes sign at @~ 0.04 and has a minimum of ~—2x1073
at o~ 0.08. After 10 iterations, we find an excellent ap-
proximation to the true power spectrum over the entire
range of wavenumbers plotted in the figure, and we succeed
in recovering a reasonable approximation to the negative
peak in w(0). In this case, however, further iterations can
lead to instabilities in P(k) (depending on the ranges of k and
@), and it proves difficult to improve much on the final
estimate plotted in Fig. 3. Fortunately, it is always easy to
detect an instability, because the estimates of the angular
correlation function w} computed from P’ begin to diverge
from the correct answer w°. In our tests we have found that
instabilities are almost always associated with angular corre-
lation functions that have negative tails. The inversions of
angular correlation functions that are everywhere positive
are usually extremely stable.

In the next example, we show how an angular correlation
function with a smooth and apparently innocuous form,

-08
o

M) (o]

ary=0.05, (13)

can result from a power spectrum that contains a bump.
Equation (13) is plotted as the solid line in Fig. 4(b), and the
initial guess for P,k? is plotted as the solid line in Fig. 4(a).
Each alternate iteration is plotted as a dotted line in Fig. 4,
and we see that the method converges quickly to a power
spectrum that contains a bump at k~ 0.1 4 Mpc, rising above
the asymptotic form P;k?co k8 and then falling steeply at
lower wavenumbers. The existence of such a long-wave-
length feature in the power spectrum could offer an import-
ant test for theories of structure formation, but a bump in the
power spectrum could easily escape detection in w(6) unless
one had some prior expectation of its presence. The tests
shown in Figs 3 and 4 demonstrate that the bump in the
power spectrum in Fig. 4 is clearly a result of the shape of
w(0), and is not caused by errors in the inversion.

5 APPLICATION TO THE APM GALAXY
SURVEY

Fig. 5 shows w(6) measured from the APM Galaxy Survey
for galaxies in the magnitude range 17<b,<20. These
estimates are identical to those plotted in fig. 1 of M90, and
are the average of w(6) measured from four zones of the
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Figure 3. Figures illustrating how Lucy’s method converges to a solution of the integral equation. In these tests we specify the functional form
of the power spectra, shown as the solid lines in (a) and (c). The angular correlation functions derived from these power spectra are shown by
the solid lines in (b) and (d). The dotted lines show the power-law initial guess for the power spectrum, and each alternate iteration until the
final one after 10 iterations. The dotted lines in (b) and (d) show the angular correlation functions computed from the sum (10) from the power
spectra shown in (a) and (c). (a) and (b) are for the power spectrum of equation (12) with k,=0.01 # Mpc~', and (c) and (d) are for k,=0.1 h

Mpc~!. The units of kare # Mpc~1.

APM survey of roughly equal area. The error bars plotted in
Fig. 5 show t20 errors computed from the scatter of the
estimates for the four zones. The inset in Fig. 1 of M90
shows that w(0) is consistent with zero on scales 6= 7°. On
these angular scales, the errors in w(8) are probably domin-
ated by systematic errors in the catalogue, which we have
estimated can introduce offsets of ~1 X 1072 in w(0) on the
scale of a single plate (Maddox et al. 1990b). The effects of
systematic errors on P(k) are discussed in more detail below.

Although these data points define a reasonably smooth
function, we have fitted them to a parametric form for w(9).
This ensures that the inverted power spectrum is smooth. We
compare this inversion with the results of inverting a linear
interpolation through the data points below. The parametric
form that we have adopted,

~ " (D'\, 2 B(w\’)—ﬂz
wor) = Alw) e [_2 (Fo) ]+[1+(a»'/a»;)”']’

o' =180/, (14)

is quite flexible, and contains seven free parameters which
we fit to the data by least-squares minimization.

The parameters determined from fits to the data points in
Fig. 5 are given in the first row of Table 1; the fit is plotted as
the solid curve in the figure. Parameters for fits to the tops
and bottoms of the 20 error bars plotted in Fig. 5 are given
in the second and third rows in the table; the corresponding
fits are shown as the dotted curves in the figure. The fit to the
mean of the data points provides a very accurate description
of the APM data points. The fits to the tops and bottoms of
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Figure 5. The points show the angular correlation function of the
APM Galaxy Survey for the magnitude range 17<b,<20 (from fig.
1 of Maddox et al. 1990a). The error bars show 2o errors computed
from the scatter in w( ) measured in four zones of the APM survey
of roughly equal area. The solid and dotted lines show least-squares
fits of the parametric form equation (14) to the points, the tops and
bottoms of the error bars.

Table 1. Parameters of fits to APM w( o

the error bars are not as accurate, but they provide a reason-
able indication of the random errors in w(@"). The fits to
equation (14) give positive values of w(awY) at all angles,
though in fact the data points cross zero at angles 6 ~ 7° and
have an average value of approximately —5 X 10~* over the
range 7° to 20° (see fig. 1 of M90). However, as noted above,
the systematic errors in the APM data are expected to be
larger than this, and to dominate the errors at values of
w1073, The fitting function has been chosen to provide an
accurate description of the APM angular correlations over
the range where w(6) exceeds 1073,

The main source of systematic errors in the APM survey
is probably the large-scale gradients in the galaxy density
arising from inaccuracies in matching the 6°x6° photo-
graphic plates to form the mosaic of 180 plates. These
systematic errors have been discussed at length by Maddox
et al. (1990c), who show that they introduce offsets of
$1-2x 1073 on the scale of a single plate (see section 2 and
figs 14 and 16 of Maddox et al. 1990b). This analysis is
confirmed by a comparison of APM magnitudes with CCD
photometry of over 12 000 galaxies taken by Tucker et al.
(1992) as part of the Las Campanas Deep Redshift Survey.
An analysis of these CCD magnitudes by Maddox et al.
(1993, in preparation) shows that the systematic errors in
w(6) are $2X 1073 on a scale of a few deg, and may well be
half this value.

A 8 w) B w} B P2
w(w) mean 0.0281 0.575 5.27 0.0197 0.0725 1.56 0.527
w(w) +20 errors  0.0212 0.720 7.62 0.0352 0.364 1.17 0.151
w(w) —20 errors  0.0226 0.598 5.30 0.0066 0.174 2.50 0.743
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To illustrate the possible effects of artificial gradients in
the APM survey caused by plate-matching errors, we sub-
tract the following function from the points in Fig. 5:

2x10°°

fi (o) "

Werr( w\)

This function subtracts 2 X 10~3 from w(6) over most of the
range shown in Fig. 5, and 1 X 1073 on the plate scale of ~ 6°
as in the model for large-scale gradients described by
Maddox et al. (1990b). The function (15) was chosen so that
the offset declines to zero smoothly as @~ ; this function
is preferable to an approximation of the systematic errors by
a constant offset, giving better stability in the numerical
inversion of the power spectrum.

Fig. 6 shows the equivalent of the test shown in Fig. 4, but
applied to the best fit to the APM data points (solid curve in
Fig. 5). We start with an initial guess P(k) k=2 and within
a few iterations the solution reaches the form shown in which
the power spectrum has a bump at k~0.1 2 Mpc™!, similar
to the example shown in Fig. 4. As Fig. 6 shows, the inver-
sions are stable and converge rapidly.

The power spectrum of Fig. 6 is plotted as the thick solid
line in Fig. 7. The inversions of the fits to the tops and
bottoms of the APM error bars are plotted as the dotted
lines. The dashed line shows the inversion of the fit to the
APM data points from which we have subtracted equation
(15) to model the systematic errors. Evidently, the APM
survey provides an accurate estimate of the three-dimen-
sional power spectrum for wavenumbers =0.05 4 Mpc™1.
On small scales, the power spectrum is a power law with a
slope P(k)ec k125 but the inversion rises above this power
law on scales k0.2 h Mpc~!, and flattens off at wave-
numbers k~0.08 h Mpc~!. Notice that there is no firm
evidence for a turnover in the APM power spectrum at long
wavelengths.

Fig. 8 shows a check of the inversions. In this figure, we
plot numerical integrations of w(ar), using the power spectra
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plotted in Fig. 7. These give curves that are almost indis-
tinguishable from the fits to w(@) shown in Fig. 5. The
dashed line crosses zero at 6= 6°, as expected from equation
(15). Clearly the power spectra plotted in Fig. 7 are the
correct inversions.of the APM angular correlation functions.

Another indication of the errors in P(k) can be obtained
by inverting linear interpolations of the APM angular
correlations measured for each of the four zones, with no
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100 |

1 " a2 aaal " A4 sl

0.01 0.1 1

k (h Mpc™Y)

Figure 7. Three-dimensional power spectra inverted from w(e)
measured from the APM survey using the kernel shown in Fig. 1.
The solid and dotted lines show the inversions of the fits to w(a)
shown as the solid and dotted lines in Fig, 4. The dashed line shows
how a systematic error in the APM w(ar), modelled by equation
(15), affects the three-dimensional power spectrum. The points
show the average of the estimates of P(k) from linear interpolations
of the w(6) data points from the four zones together with 1o error
bars (see Fig. 9).
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Figure 6. Convergence of Lucy’s method for the power spectrum of the APM Galaxy Survey (as Figs 3 and 4). In this plot we show the
inversion of the best-fitting w( @) to the APM data points (solid line in Fig. 5).
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Figure 8. Angular correlation functions computed from the curves
shown in Fig. 7 compared with the APM data illustrating the
accuracy of the inversion.
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Figure 9. Three-dimensional power spectra inverted from w(er)
computed from linear interpolations of the w(6) data points. The
dotted lines show P(k) determined from each of the four zones. The
thick solid line shows P(k) determined from the average of w(6)
over the four zones. The points show the average of the estimates of
P(k) from the four zones together with 1 error bars.

smoothing of the data or constraints that force the correla-
tion function to be positive on large angular scales. These
inversions are shown by the dotted lines in Fig. 9. It is
interesting that three zones give similar power spectra which
peak at wavenumbers ~0.06 2 Mpc~!, while P(k) for the
fourth continues to rise until k~0.02 » Mpc~!. Even in a
sample as large as the APM Galaxy Survey, the random
errors on w(0) lead to large errors in the power spectrum at
small wavenumbers. The points show the average of the four
dotted lines and the 1o dispersion. These points are also
plotted in Fig. 7. The thick solid line in Fig. 9 shows the

10° prem—rr e
(a) (b)
10* E
~~
) [
N
% 1000 L

100 E

1 sl

0.01 0.1

k (h Mpc™!)
Figure 10. Sensitivity of the inversion to errors in the redshift
distribution evolution and cosmological model. The solid lines in (a)
and (b) are identical to the solid line in Fig. 7 (i.e. a =0, Q=1). The
dotted and dashed lines in (a) show the result of increasing and
decreasing the median redshift of the APM survey by 12 per cent
respectively, keeping all other parameters fixed. In (b), we use the
redshift distribution given by equations (7) and (8), but vary the
evolution and cosmological model. The dotted line shows a=1.2,
Q =1, and the dashed line shows a =0, Q=0.

inversion of the linear interpolation of the average w(6) for
the four zones. The average P(k) over the four zones is in
excellent agreement with the inversion of the parametric
form (14) fitted to the data points for all wavenumbers
20.01 2 Mpc~!. At smaller wavenumbers, however, it is
clear that both the random and systematic errors become
very large and the APM survey provides little useful infor-
mation on P(k).

Errors in the model for the redshift distribution of the
APM survey will cause errors in the three-dimensional
power spectrum. Uncertainties in the value of the median
redshift cause a much larger change in the power spectrum
than deviations of the shape of the redshift distribution from
the form given in equation (7). From the Broadhurst et al.
(1988) survey, the scatter in the median redshift over five
fields has a standard deviation of 6 per cent. The median
redshift at a magnitude limit of b, ~ 20 given by equation (8a)
is therefore extremely unlikely to be in error by more than 12
per cent, and so we adopt this as a generous estimate of the
error in the redshift distribution. The solid line in Fig. 10(a)
is identical to the solid line plotted in Fig. 7. The dotted and
dashed lines show the effects of increasing and decreasing
the median redshift by 12 per cent respectively. An error of
this size leads to a change of about 20 per cent in the ampli-
tude of P(k), but leaves the shape almost unchanged. The
range plotted in Fig. 10(a) is likely to overestimate the uncer-
tainties arising from the errors in the redshift distribution.

Fig. 10(b) shows the sensitivity of the inversion to the
evolution of the power spectrum and the cosmological
model. We plot the solid line from Fig. 7, which was com-
puted from the kernel plotted in Fig. 2, i.e. @ =0 (the power
spectrum is constant in comoving coordinates) and Q=1.
The dotted line shows the inversion for a =1.2 (i.e. a power
spectrum of form P(k)eck~!? is constant in physical co-
ordinates) and Q = 1, and the dashed line shows a =0, Q=0.
In each case, the figures have similar shapes but are slightly
offset from each other. At the depth of the APM survey,
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evolutionary corrections and cosmology do not affect the
shape of the power spectra very much. However, uncer-
tainties in the evolution of P(k)in deeper samples could limit
the usefulness of the inversion technique.

6 DISCUSSION

Several authors have published three-dimensional power
spectra for various galaxy redshift samples. In Fig. 11, we
compare some of these with our inversion of P(k). The filled
circles show the convolved power spectrum P(k) for the
1.2-Jy IRAS redshift survey (Fisher et al. 1993), the filled
stars show Kaiser’s (1991) estimates of P(k) for the 0.6-Jy
QDOT survey, and the open triangles show the results of
Vogeley et al. (1992) for the CfA survey. In each case, we
have plotted the power spectra measured in redshift space,
which will differ from the power spectra in real space
because of the distortions caused by peculiar velocities.
Peacock & Nicholson (1991) have computed the power
spectrum of a sample of radio galaxies, but this will not be
discussed in detail here; the power spectrum of their sample
has a similar shape to that of the CfA sample at wave-
numbers 0.1 £ Mpc~! and has comparable errors (see fig.
1 of Vogeley et al. 1992), but with an amplitude that is three
times higher.

The power spectra measured for the 1.2- and 0.6-Jy IRAS
surveys should be almost the same, but in fact the QDOT
results are systematically higher than the 1.2-Jy results at
k=<0.1 h Mpc~! by about two standard deviations. The 1.2-
Jy power spectrum has not been deconvolved to take into
account the window function of their adopted survey geome-
try, but this should not affect the estimates by more than 15

per cent at the smallest wavenumbers plotted (see Fisher et
al. 1993), which is much smaller than the differences in the
IRAS power spectra plotted in Fig. 11. This discrepancy is
disturbing and deserves further investigation. It may indicate
that the errors in P(k) have been underestimated, that there
is a systematic difference between the two catalogues, or that
the discrepancy is caused by differences in the estimation
techniques.

The CfA power spectrum has large error bars at wave-
numbers <0.08 & Mpc~!. At larger wavenumbers, the CfA
power spectrum sits high in comparison to the power spec-
trum determined from the APM survey. This could perhaps
be caused by peculiar velocities. According to linear pertur-
bation theory, the power spectrum measured in redshift
space will be higher than the power spectrum measured in
real space by a factor

(16)

20% 1Q17
3 b 50

ooz 1a

(Kaiser 1987), where b is a ‘biasing’ factor relating fluctua-
tions in the galaxy distribution to fluctuations in the mass,
(00/0)ga1= b(00/0)mass- However, the CfA points in Fig. 11
lie about a factor of 2 higher than the APM power spectrum,
but this would imply 5/Q%6<1 from equation (16), which
seems unreasonably low and disagrees with the lack of
redshift-space distortion seen in the analysis of the Stromlo/
APM redshift survey (Loveday et al. 1992b). We do not
regard this discrepancy as particularly serious, because the
errors in the CfA power spectrum are large. It is worth
noting that the amplitudes of the APM power spectra plotted
in Figs 7 and 10 seem quite reasonable when compared with

105 : v v Al 'lIl" v L] v ll"l‘ v v v ll'lI' v L
w0t T 1“4}‘* 5
2 | :
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1000 3 E
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Figure 11. The power spectra for the APM Galaxy Survey from Fig. 7 plotted against redshift-space estimates of the power spectra from the
QDOT 0.6-Jy IRAS survey (Kaiser 1991), the 1.2-Jy IRAS survey (Fisher et al. 1993) and the CfA redshift survey (Vogeley et al. 1992).
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the amplitudes of the correlation functions measured from
other surveys. Computing the variance of the fluctuations in
spheres of radius x,=8 A~ ! Mpc,

2_ 9 [TPK
o 2n’ 0 (kxo)6

[sin (kx,) — kx, cos (kx,)]? dk (17)

from the APM power spectra in Fig. 11, we find values of o
in the range 0.76-0.88, with the best-fitting curve giving
03=0.83. These values are close to the value oy~ 1 deter-
mined from the 14.5-mag CfA survey (Davis & Peebles
1983). It is possible that our estimate of oy is uncertain by
~20-30 per cent, because of uncertainties in the cosmologi-
cal model and the evolution of P(k), and errors in the red-
shift distribution of the APM survey (cf. Fig. 10).

In Fig. 12, we compare the APM power spectrum with the
linear-theory power spectra of scale-invariant, adiabatic,
cold dark matter (CDM) models. The two solid curves show
power spectra for the ‘standard’ CDM model, ie. with
I'=QA=0.5 and for I'=0.2 (equation 7 of Efstathiou, Bond
& White 1992a, hereafter E92). In this figure, the APM
power spectrum has been divided by a factor of 4 (i.e. the
power spectrum matches the amplitude of the power spec-
trum of the mass fluctuations if b, =2), and the theoretical
curves have been normalized at long wavelengths to match
the amplitude of the anisotropies in the microwave back-
ground radiation detected by COBE (Smoot et al. 1992); in
deriving this normalization, we have assumed that Q,=1,
and that temperature fluctuations from gravitational waves
are negligible (equations 5 and 6 of E92). The region labelled

10* |

1000 |

~~
&
100 ’
10 |
b,py=2 L
V‘—
aaaaaal a3l A aaaaaal a3 a1l
1073 0.01 0.1 1
k (h Mpc™?)

Figure 12. The power spectra of Fig. 5 divided by a factor of 4 (i.e.
bapm=2) compared to the linear power spectra of two CDM
models with T'=0.5 (‘standard’ CDM) and I'=0.2 normalized to
match the COBE temperature fluctuations on large scales assuming
Q=1. The hatched area shows the range of amplitudes allowed by
the COBE observations for scale-invariant, adiabatic fluctuations if
scalar perturbations dominate (i.e. temperature fluctuations created
by gravitational waves are negligible). The arrow shows roughly the
wavenumber at which fluctuations in the galaxy distribution have a
variance of unity [o(x,)=1, plotted at wavenumber k,=1/x,
computed from equation (17) for the power spectrum plotted as the
thick solid line].

COBE shows the range of amplitudes allowed by the COBE
measurements for a scale-invariant, adiabatic spectrum; the
upper limit k£ ~0.003 QJ*! A Mpc~! of this region is set by
the 7° resolution of the COBE DMR experiment.

The I'=0.5 curve cannot be adjusted to fit the shape of
the APM power spectrum for any value of b,p, (see M90).
The I' =0.2 curve provides a much better match to the APM
power spectrum up to wavenumbers kK~ 0.3 A Mpc~!, and,
as we have noted elsewhere, it provides a good phenomeno-
logical match to the angular correlation function of the APM
Galaxy Survey and to the spatial correlation function of rich
APM clusters (Efstathiou et al. 1990b, 1992b; Efstathiou
1993). We would not expect the linear power spectrum to

match the observations at larger wavenumbers, since the

mass fluctuations are non-linear on these scales. The arrow
plotted in Fig. 12 shows the wavenumber k,=1/s, at which
fluctuations in the galaxy distribution have unit variance,
computed from equation (17) for the APM power spectrum
plotted as the thick line in the figure.

The most plausible way to realize the I'=0.2 curve would
be to add a cosmological constant to a low-density CDM
universe, so that the geometry is spatially flat as predicted by
the inflationary model (e.g. Peebles 1984). In this case, a
match to the COBE microwave background anisotropies
requires lower values of b,py, in the range ~0.8-1.3,
depending on the value of & (see E92, fig. 2; see also
Kofman, Gnedin & Bahcall 1993). As noted by several
authors (e.g. Davis, Summers & Schlegel 1992; Taylor &
Rowan-Robinson 1992, and references therein), it is unclear
whether amplitudes in this range are compatible with
observed streaming motions in a low-density universe.
Although the I'=0.2 curve provides a rough match to the
APM power spectrum at long wavelengths, it fails to fit the
‘bump’ accurately in the APM power spectrum at k=0.2 h
Mpc~!. This slight discrepancy is noticeable also in fig. 1 of
E92, where the w(6) curve for a I' =0.2 model lies below the
APM measurements on angular scales 2°s 05 6°.

Recently, there has been renewed interest in the possibility
that the excess power in the galaxy distribution arises from
‘mixed’ dark matter (MDM), i.e. that about 10-30 per cent of
the critical density is contributed by massive neutrinos, and
most of the rest is made up of cold dark matter with the
remainder in baryons (see Davis et al. 1992; Taylor &
Rowan-Robinson 1992; Schaefer & Shafi 1992; for earlier
work see Shafi & Stecker 1984; Bardeen, Bond & Efstathiou
1987; Schaefer, Shafi & Stecker 1989; Holtzman 1989). Fig.
13 shows the linear power spectra for two MDM models
from Holtzman (1989), normalized to the COBE amplitude
on large scales. These models just about match the APM
power spectra at k—0.1 if bjpy~ 1.2, but only if the
systematic errors in the APM survey are as large as in equa-
tion (15). At larger wavenumbers, the APM power spectrum
lies well above the theoretical spectrum for Q,=0.3. In
contrast, Taylor & Rowan-Robinson (1992) argue that a
linear MDM power spectrum with Q,=0.3 provides a good
match to the power spectrum of IRAS galaxies over the
wavenumber range 0.05sks1 h Mpc~!. However, in
making this comparison, they inferred the power spectrum
and its errors from measurements of galaxy variances, rather
than by estimating the power spectrum directly (cf. the
estimates plotted in Fig. 11); moreover, in comparing the
theoretical predictions with observations, they took no

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993MNRAS.265..145B&amp;db_key=AST

BVNRAS, 265, - I45B™

rt

The three-dimensional power spectrum of galaxy clustering 155

10° F T <

1000 L

P(k)

100 ¥

10t MDM h=0.5 0,=0.1

bpy=1.2
a‘=1
aaaaaal 4 2 aaaaal a2 sl Al 4 12242
1073 0.01 0.1 1
k (h Mpc™})

Figure 13. As Fig. 12, except that we have divided the APM power
spectrum by a factor of 1.44 (b,py =1.2). We have plotted linear
power spectra for two MDM models from Holtzman (1989),
normalized to match the COBE anisotropies. These models have
scale-invarient initial spectra, k=0.5, Q p, +Q,+Q,=1.Q,=0.1,
and Q,=0.3 and 0.1 (as indicated in the figure).

account of non-linear evolution, or of the distortion of the
clustering in redshift space caused by small-scale peculiar
motions and redshift errors. The agreement that they find
with the MDM linear power spectrum, particularly at wave-
numbers k= 0.1 2 Mpc~1, is fortuitous.

It is easy to understand the differences between Figs 12
and 13. The power spectrum of the 2,=0.1 model has a
similar shape to the ‘standard” CDM model and hence
requires a low bias, b,py ~ 1, to match the long-wavelength
region of the APM power spectrum and the COBE aniso-
tropy measurements. However, for a low value of Q, the
amplitude of the power spectrum on small scales is high; for
example, the power spectrum with Q, = 0.1 plotted in Fig. 13
gives 03=0.83 for the amplitude of the mass fluctuations.
This is significantly larger than the values of oz~ 0.5-0.6
inferred from the abundances of rich clusters of galaxies
(White, Efstathiou & Frenk 1993). The curve with Q,=0.3
plotted in Fig. 13 gives a more acceptable value oz=0.59,
but it remains to be seen whether this model can match the
small-scale clustering seen in the galaxy distribution. First
results from numerical simulations by Klypin et al. (1993)
indicate that it may be possible to match the observed non-
linear correlations of galaxies, but their prescriptions for
identifying galaxies in dissipationless models are schematic;
more complex calculations, incorporating hydrodynamics,
are required to address this point in detail.

There are many other possible models that we could
compare with our results, for example, baryon isocurvature
models (Peebles 1987a) and tilted CDM models (Cen et al.
1992), but we leave such comparisons to the interested
reader. However, we mention here that it is worth investigat-
ing whether the feature at k~0.1 2 Mpc™! in the APM
power spectrum could be identified with the matter-radia-
tion Jeans mass in baryon isocurvature models (see the
features in the power spectra plotted by Peebles 1987b and

Efstathiou & Bond 1987, and the discussion by Jorgensen et
al. 1993). It is also possible that this feature is associated with
the ‘periodicity’ on scales of ~120 h~! Mpc reported in
pencil-beam redshift surveys (Broadhurst et al. 1990).

Our main goal has been to illustrate the technique for
recovering the three-dimensional power spectrum from
measurements of the angular correlation function, and to apply
it to the APM survey. We find that the APM power spectrum is
a power law at high wavenumbers, with slope P(k)oc k=125,
At wavenumbers k~ 0.2 h Mpc ™!, the power spectrum rises
above the power law and then flattens at k<0.08 42 Mpc™!,
and perhaps declines at smaller wavenumbers. The shape of
the APM power spectrum at large scales is matched approxi-
mately by a low-density CDM power spectrum with I'=0.2.
Mixed dark matter models can be adjusted to match the
APM power spectrum at wavenumbers k0.1 2 Mpc~! and
to the COBE anisotropies on scales k<0.003 2 Mpc~L It is
important to investigate the non-linear clustering of these
models in detail to see whether they can match the APM
power spectrum on scales k2 0.1 A Mpc™1.
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